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Abstract –In this paper, a new high-order chaotic system is proposed. This system has an equilibrium point 

on center and its specific feature is existence of two large Lyapunov exponents compared to other high-

order chaotic systems. In order to prove the existence of high-order chaos in this system, criteria such as 

energy dissipation of the system, instability of equilibrium point, system absorption and Lyapunov exponents 

of system are used. Investigating the mentioned criteria confirms the existence of chaos in the system under 

study. Then, by changing system parameters, different dynamic behaviors such as the limit cycle and high-

order chaos can be observed in the system. Finally, using a Linear Quadratic Regulator (LQR) controller, 

chaotic system’s stability around equilibrium point is guaranteed. 
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INTRODUCTION  
 

Chaotic systems have attracted the attention of 

scientists in various fields in recent years [1, 2]. Chaos 

theory explores chaotic dynamical systems. These 

systems are dynamical and nonlinear in nature that are 

very susceptible to initial conditions; slight changes in the 

initial conditions of the system cause many changes in the 

future. Behavior of chaotic systems appears to be random, 

but there is no need for randomness in creating chaotic 

behavior and definite dynamical systems can show 

chaotic behavior too. Various methods such as linear and 

nonlinear feedback control and adaptive control are used 

to analyze the chaotic behavior of these systems. 

The emergence of new mathematical and numerical 

tools has played an important role in understanding and 

describing the concept of chaos. These tools have been 

helpful to detect chaos in many scientific fields such as 

biology [3], chemistry [4] and engineering applications 

[5, 6]. Research on Chaotic systems can be divided into 

three general categories: review of new chaotic systems 

[7, 8], harmony in chaotic systems [9, 10] and the control 

of chaos [11]. Research done in this paper is placed in the 

third category. After the first research on the area of chaos 

control [12], efforts to control the chaotic systems are 

done with three main objectives. The first objective which 

is purely classical consists of stabilization of one of the 

unstable equilibrium points [13-16].  

The second objective is using control strategy to 

achieve harmony in the system [17-19]. The third is to 

control the chaotic systems to stabilize unstable periodic 

paths in chaotic absorbents [20-23]. High-order chaos was 

first presented in [24]. High-order continuous chaotic 

systems have at least four state variables and the special 

characteristic of these systems is the existence of two 

positive Lyapunov exponents. This feature makes the 

dynamic of the system to extend in more than one 

direction simultaneously. One of the common methods to 

design a high-order chaotic system is to consider a low-

order chaotic system with three state variables and adding 

a state feedback controller to it and retuning the system 

coefficients [25, 26]. In this case, the high-order chaos is 

created in the system. 

In this paper, an LQR controller is applied to a 

nonlinear system that ensures system stability. The overall 

structure of this paper is as follows: In Section 2, after 

introducing the dynamics of high-order chaotic system, 

system energy dissipation and the instability of the 

equilibrium point are shown to prove chaos in the system. 

Then, system absorbent, time response and Lyapunov 

exponents of the system are investigated. In Section 3, the 

different dynamical behavior of the system can be 

observed by changing one of the system parameters. In 

Section 4, system is stabilized around its equilibrium 

point using an LQR controller design and Section 5 

concludes the paper. 

 

MATERIAL AND METHODS 

 

2- Dynamical equations of the new high-order 

chaotic system 

Dynamics equations of the high-order chaotic system 

studied above are derived by adding a fourth state 

variable and some nonlinear terms to low-order chaotic 

system is presented in [27]. System equations are given in 

formula 1. 
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   


   
  

            (1)                                                           

Where x, y, z and w represent the state variables of the 

chaotic system. By choosing the parameters as in (2), the 

system shows the behavior of a high-order chaotic 

system. 
7.7, 1, 8

4 , 8 , 4

1 , 1 , 2

a b c

d e f

g h k

   

   

   

                                    (2) 

Following conditions are necessary for the existence 

of chaos in a system. 

• The system must be dissipative. Being dissipative 

means that the energy of the system should be reducing 

and the system must be inclusively stable. 

• The system must have unstable equilibrium points. 

Jacobian matrix calculated in the equilibrium points must 

have unstable eigenvalues. 

• System paths should be limited and bounded. 

Next, these conditions will be reviewed. 

 

2.1. Checking that if system is dissipative or not: 

Dynamical systems can be divided into two groups, 

conservative and dissipative. One of the necessary 

conditions for the existence of chaos in a system is that 

the system should be dissipative. To check that if system 

is dissipative or not, suppose that dynamic equations of 

the system are as follows, 

1 1 1 2

2 2 1 2

1 2

( , , , )

( , , , )

( , , , )

n

n

n n n

x f x x x

x f x x x

x f x x x







 

                            (3) 

First   is calculated. If this value is equal to zero then 

the system is conservative and if this value is negative 

then the system is dissipative. Equation (4) provides the 

condition for system (1) to be dissipative considering the 

parameters in formula 2. 

31 2 4 7.7 4 11.4 0
2

ff f f
F

x z

  
          

   

    (4) 

Considering that the above expression is negative, 

system (1) is dissipative, though globally stable.  

 

2.2. Evaluation of instability of system equilibrium 

point: To calculate the equilibrium point of the system is 

used which in this case only the equilibrium point of the 

system will be at. Jacobian matrix of the system at 

equilibrium point is obtained as follows. 
 

(0,0,0,0)

7.7 7.7 0 0

8 0 0 8

0 0 4 0

0 2 0 0

J

 
 
 
 
 

 

                   (5) 

Eigenvalues of the Jacobian matrix is as follows. 

1

2

3

4

12.2454

2.2727 2.2126

2.2727 2.2126

4

j

j









 


 


 
  

                               (6) 

According to the sign of the eigenvalues of Jacobian 

matrix of the system, it becomes clear that equilibrium 

point of the system is saddle point and thus unstable. In 

conclusion one can say that the system is locally unstable. 

 

2.3. Absorbent of the high-order chaotic system: 

Simulating this high-order chaotic system in MATLAB, a 

number of absorbents of this system in two-dimensional 

and three-dimensional space are given in the form of 

Figures 1and 6. Initial conditions for simulation of chaotic 

system has been considered 
0 0 0 0( , , , ) ( 4, 3, 1 , 3 )x y z w   
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Figure 1. Absorbent of system in (x-y) space 
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Figure 2. Absorbent of system in (x-z) space 
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Figure 3. Absorbent of system in (y-z) space 
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Figure 4. Absorbent of system in (z-w) space 
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Figure 5. Absorbent of system in (x-y-z) space 
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Figure 6. Absorbent of system in (x-z-w) space 

 

2.4. Response time of state variables of high-order 

chaotic system: Figure 7 shows the response time of state 

variables of the high-order chaotic system. Initial 

conditions for simulation are considered as 

0 0 0 0( , , , ) ( 4, 3, 1 , 3 )x y z w    . 
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Figure 7. Response time of state variables of the high-

order chaotic system 
 

2.5. Evaluation of the Lyapunov exponent of high-

order chaotic system: Lyapunov exponent was used in 

the year 1892 to control the stability of nonlinear 

differential equations. This method allows the study of the 

stability of differential equations without actually solving 

them. In order to call a system chaotic one must 

demonstrate that the system is highly dependent on the 

initial conditions. In other words, if two paths start at the 

initial conditions very close to each other, after a short 

period of time they diverged exponentially and take a 

completely different future. Lyapunov exponent specifies 

the dynamic sensitivity of the system to initial conditions. 

This quantity specifies the rate of convergence or 

divergence of two close paths in phase space. It is a 

standard quantity to determine whether a system is 

chaotic or not. For example, if the Lyapunov exponent is 

shown by , then 

 If  becomes positive then the distance between 

two points in the phase space increases exponentially, i.e. 

the system moves toward becoming chaotic. 

 If λ becomes negative, one can conclude that the 

system shows stable behavior, in other words, the system 

reaches toward steady state. 

 0  represents the boundary case. 

Table 1 shows dynamic states for a chaotic system 

with 4 state variables depending on the sign of the 

Lyapunov exponent [26]. In this table 

, 1,2,3,4iL i  represents the ith Lyapunov exponent of the 

system. 
 

Table 1. dynamic states of a chaotic system with 4 state 

variables depending on Lyapunov exponents 

4L 
3L 

2L 
1L Dynamic behavior type 

_ _ _ _ Equilibrium point 

_ _ _ 0 Limit cycle 

_ _ 0 0 Semi-periodic 

_ _ 0 + Chaotic behavior 

_ 0 + + High-order chaos 
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Lyapunov exponent of system (1) is specified in (7). 

As can be seen, the system has two positive Lyapunov 

exponents, a zero exponent and a negative Lyapunov 

exponent. According to Table (1), this case presents high-

order chaos in system. 

1

2

3

4

2.2316

0.59014

0

14.4994

L

L

L

L








  

                               (7) 

3. Creating different dynamic behaviors for high-order 

chaotic system by changing parameter a.  

Changing one of system parameters and keeping the 

rest constant, the system would show different dynamic 

behaviors. For example, if parameter a is changed in the 

range, the high-order system (1) shows the behavior as in 

Table 2. 

 

Table 2. Different dynamic behaviors of the system in 

terms of changes of parameter a 

Type of system dynamic behavior Range of parameter a 

Low-order chaos 0 0.3a  

Limit cycle (periodic) 0.4 0.9a  

semi-periodic 1 1.4a  

Limit cycle (periodic) 1.5 3.5a  

semi-periodic 3.7 3.9a  

High-order chaos 4.3 15a  

 

4. High-order chaos control for chaotic systems  

Consider equations of a high-order nonlinear 

continuous chaotic system as follows: 

0

( , )

(0) n

X f X t

X X

 


 

                                         (8) 

Where X is considered as ( , , , )X x y z w vector. 

LQR controller is designed in such a way that the 

controlled system ( , )X f X t u   converges to the 

unstable equilibrium point or its own periodic paths. If 

0u   then controlled system becomes the primary 

chaotic system. The proposed controller is added to the 

second equation of the chaotic system. System under 

study is a chaotic system with the following differential 

equation: 
2

2

2

7.7( )

8 4 8

4

2

x y x yz

y x xz w u

z z y xw

w y

   


   


   
  

                           (9) 

LQR controller is a linear controller that is applied to 

a linear system. For this reason, in order to utilize this 

controller, the system should be linearized around the 

desired operating point. The desired operating point is the 

origin and the system is linearized around this point as 

follows:  

1 1 1 1
1

2 2 2 2 2

3 3 3 3 3

44 4 4 4

7.7 7.7 0 0 0

8 0 0 8 1
,

0 0 4 0 0

0 2 0 0 0

f f f f f
x y z w u
f f f f f

x y z w u
A B

f f f f f

x y z w u

ff f f f

ux y z w

      
                  

               
         
                     

       






 

Next, LQR controller is designed for linearized system 

and is applied on nonlinear system. This controller is 

designed to optimize the following criteria. 

0

( 2 )T T TJ x Qx u Ru x Nu dt



     

The controller parameters are chosen as follows: 

 

1 0 0 0 0

0 1 0 0 0
100 , 10 ,

0 0 1 0 0

0 0 0 1 0

Q R N

   
   
      
   
   
   

 

 

Simulation results are shown in Figure 8. As shown in 

this figure, the controlled system is converged toward the 

origin. To compare the proposed controller with other 

controllers, one can refer to Figure 9. This figure 

demonstrates the state variables of the system (9) 

considering that the origin of the system is stabilized 

using linear state feedback controller. It can be said that 

the proposed controller has improved a bit in terms of 

time to reach the final value, also the range in which state 

variables change becomes smaller. 

 

CONCLUSION 

 

In this paper, a high-order chaotic system with an 

equilibrium point was proposed and by investigating 

some criteria such as energy dissipation and Lyapunov 

exponents, the existence of chaos was proven analytically. 

On the other hand, by investigating response time of the 

system and also system exponents, the existence of high-

order chaos in system was also proven through 

simulations. Then, by changing one of system parameters 

and keeping the rest of the parameters constant, a 

different dynamic behavior of a chaotic system was 

observed.  

Finally, an LQR controller was designed for the 

linearized dynamic system and by applying it to the initial 

nonlinear system, optimal performance of the proposed 

controller was shown in the stabilization of nonlinear 

system around its equilibrium point. Also the proposed 

controller compared to the linear state feedback controller 

is better in terms of the time to reach the final value and 

the range of state variables. 
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Figure 8. Response time of 4 state variables of the system 

controlled by LQR controller 

 

Figure 9. Response time of 4 state variables of system 

controlled by linear state feedback controller with K = -30 
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