Path-Finding in Multi-Agent, Unexplored and Dynamic Military Environment Using Genetic Algorithm

Saeedvand S, Naser Razavi S and Ansaroudi F.
ABSTRACT: Path-finding in multi-agent, unexplored and dynamic military environment is one of the most important issues for solving. Necessary constraints to find path in a dynamic and unexplored environment are considered and Genetic algorithm is used.

Keywords: Multi-Agent System, Path-finding, Chromosome

PII: S232251141500002-4

Optimal Design of Bearingless Permanent Magnet-Type Synchronous Motors for Generating Maximum Levitation Force
Original Research, D2
Honarjou M., Faraji H. and Shirzadi A.

ABSTRACT: One maintenance task that still exist with conventional motors, are bearing lubrication and renewal. Bearingless motors could help solve many of these maintenance problems, reducing in the cost of maintenance. However, the design of bearingless rotating machines is still in the research phase.

Keywords: Bearingless Permanent Magnet Synchronous Motor, Maximum Levitation Force, Optimization, Thickness of PM.

PII: S232251141500003-4

Studying an Improved Interval-Only Algorithm for the De-Interleaving of Radar Pulses

Original Research, D3
Daryasafar N and Dehghani H.

ABSTRACT: In the electronic intelligence system (ELINT) and other applications the radar pulses are transmitted at the same frequency and time but in different channels and then they are de-interleaved in the receiver. In this paper an improved interval-only algorithm is proposed to solve this problem.

In the electronic intelligence system (ELINT) and other applications the radar pulses are transmitted at the same frequency and time but in different channels and then they are de-interleaved in the receiver. In this paper an improved interval-only algorithm is proposed to solve this problem.

In the electronic intelligence system (ELINT) and other applications the radar pulses are transmitted at the same frequency and time but in different channels and then they are de-interleaved in the receiver. In this paper an improved interval-only algorithm is proposed to solve this problem.
Direct Kinematics solution of 2-(6UPS) Hybrid Manipulator based on Neural Network

Original Research, D4

Rahmani A, Ghanbari A, Mahboubkhah M.

ABSTRACT: This contribution addresses forward kinematics problem of 2-(6UPS) Hybrid Manipulators, Stewart Mechanism, and Neural Network techniques. The proposed solution demonstrates a significant improvement over traditional methods in terms of accuracy and computational efficiency.

Keywords: 2-(6UPS) Manipulators, Stewart Mechanism, Forward Kinematics Analysis, Nonlinear Multivariable System, WNN.
Current Measurement with Optical Current Transformer

![Diagram of Optical Current Transformer](image)

Original Research, D5
Alavi O.

ABSTRACT: Applying an optical current transformer (optical CT) to substations has several advantages, e.g. high accuracy and a reduced risk of saturation. This study presents the development of a new fault location system utilizing an optical current transformer. The system utilizes low-loss fibers contained in an insulator. As an application of the optical CT, a new fault location system has been developed.

Keywords: OCT, Fiber Optic, Current Sensor, Protection

PII: S232251141500005-4

Reliability Constrained Energy and Reserve Scheduling of Microgrids Including High Penetration

PII: S232251141500006-4
ABSTRACT:
Due to environmentally and economically advantages, high deployment of renewable energy sources (RES) such as wind or solar power has been considered as a promising route towards sustainable electric power generation. Scheduling of Electric Vehicles considering their battery lifetime is another important factor. By considering both aspects, the optimal requirement reserve is determined by a tradeoff between reliability and economics.

Keywords:
Microgrids, renewable energy sources (RES), energy and reserve scheduling, expected energy not supplied (EENS).

PII:
S232251141500007-4