Path-Finding in Multi-Agent, Unexplored and Dynamic Military Environment Using Genetic Algorithm

Original Research, D1
Saeedvand S, Naser Razavi S and Ansaroudi F.
ABSTRACT: Path-finding in multi-agent, unexplored and dynamic military environment is one of the most important issues for solving ... necessary constraints to find path in a dynamic and unexplored environment are considered and Genetic algorithm is used.

Keywords: Multi-Agent System, Path-finding, Chromosome

PII: S232251141500002-4

Optimal Design of Bearingless Permanent Magnet-Type Synchronous Motors for Generating Maximum Levitation Force

![Diagram of motor system]
Original Research, D2
Honarjou M., Faraji H. and Shirzadi A.

ABSTRACT: One maintenance task that still exist with conventional motors, are bearing lubrication and renewal. Bearingless motors... winding pole-pair in the amount of levitation force is investigated. The simulation is done in Maxwell software.

Keywords: Bearingless Permanent Magnet Synchronous Motor, Maximum Levitation Force, Optimization, Thickness of PM.

PII: S232251141500003-4

Studying an Improved Interval-Only Algorithm for the De-Interleaving of Radar Pulses

Original Research, D3
Daryasafar N and Dehghani H.

ABSTRACT: In the electronic intelligence system (ELINT)
Direct Kinematics solution of 2-(6UPS) Hybrid Manipulator based on Neural Network

ABSTRACT: This contribution addresses forward kinematics of 2-(6UPS) Manipulators, Stewart Mechanism,
Current Measurement with Optical Current Transformer

ABSTRACT:
Applying an optical current transformer (optical CT) to substations has several advantages, e.g. high accuracy and reliability. The optical CT is designed to measure the current of a conductor using input and output fibers contained in an insulator. As an application of the optical CT, a new fault location system has been developed.

Keywords: OCT, Fiber Optic, Current Sensor, Protection

Reliability Constrained Energy and Reserve Scheduling of Microgrids Including High Penetration of Renewable Resources

PII: S232251141500005-4

PII: S232251141500006-4
ABSTRACT:
Due to environmentally and economically advantages, high deployment of renewable energy sources (RES) such as wind or solar is required. In this paper, the utility of electricity is supplied by the main grid and the distributed generation such as RES. As the output of RES is highly dependent on weather conditions, the optimal charge-discharge scheduling of electric vehicles is proposed with considering their battery lifetime. The first criterion is to reduce the amount of energy not supplied (ENS) as much as possible and the second criterion is to maximize the battery lifetime. The optimal scheduling of EVs is modeled as a mixed-integer nonlinear optimization problem, which is solved by the interior-point algorithm. Finally, the simulation results show that the proposed strategy can significantly reduce the ENS and prolong the battery lifetime.

Keywords:
Microgrids, renewable energy sources (RES), energy and reserve scheduling, expected energy not supplied (EENS).

PII:
S232251141500007-4