Path-Finding in Multi-Agent, Unexplored and Dynamic Military Environment Using Genetic Algorithm

Original Research, D1
Saeedvand S, Naser Razavi S and Ansaroudi F.
| ABSTRACT: | Path-finding in multi-agent, unexplored and dynamic military environment is one of the most important issues for solving various problems. Necessary constraints to find paths in a dynamic and unexplored environment are considered and Genetic Algorithm is used. |
| Keywords: | Multi-Agent System, Path-finding, Chromosome |

PIL: S232251141500002-4

Optimal Design of Bearingless Permanent Magnet-Type Synchronous Motors for Generating Maximum Levitation Force
Original Research, D2
Honarjou M., Faraji H. and Shirzadi A.

ABSTRACT:
One maintenance task that still exist with conventional motors, are bearing lubrication and renewal. Bearingless motors have avoided this problem, but the maximum levitation force is a major problem. The authors are investigating the effect of the thickness of Permanent Magnets (PM) on the maximum levitation force of the Bearingless Permanent Magnet Synchronous Motor (B-PMSM). The simulation and optimization of the maximum levitation force are done in Maxwell software.

Keywords: Bearingless Permanent Magnet Synchronous Motor, Maximum Levitation Force, Optimization, Thickness of PM.

PII: S232251141500003-4

Studying an Improved Interval-Only Algorithm for the De-Interleaving of Radar Pulses

Original Research, D3
Daryasafar N and Dehghani H.

ABSTRACT: In the electronic intelligence system (ELINT) field, radar signals are used both technical and technical. In the process of identification of these signals, both technical and technical, their block diagrams and implementations steps as well as their ability in Deinterleaving of radar pulses are analyzed.

3 / 6
Direct Kinematics solution of 2-(6UPS) Hybrid Manipulator based on Neural Network

Original Research, D4
Rahmani A, Ghanbari A, Mahboubkhah M.

ABSTRACT: This contribution addresses forward kinematics analysis of 2-(6UPS) Hybrid Manipulators, Stewart Mechanism, Nonlinear Multivariable System, WNN.
Current Measurement with Optical Current Transformer

ABSTRACT:
Applying an optical current transformer (optical CT) to substations has several advantages, e.g. high accuracy and reliability. This new sensor technology has been utilized for the development of a protection system for electric power systems. The main idea is to sense current by means of a sensing fiber contained in an insulator. As an application of the optical CT, a new fault location system has been developed.

Keywords: OCT, Fiber Optic, Current Sensor, Protection

Reliability Constrained Energy and Reserve Scheduling of Microgrids Including High Penetration of Renewable Resources
ABSTRACT:
Due to environmentally and economically advantages, high deployment of renewable energy sources (RES) such as wind or solar energy has been considered. However, this deployment has some challenges such as intermittency and reliability so that the optimal requirement reserve is determined by a tradeoff between reliability and economics.

Keywords: Microgrids, renewable energy sources (RES), energy and reserve scheduling, expected energy not supplied (EENS).

PII: S232251141500007-4

Introducing a New High-Order Chaotic System with an Equilibrium Point and Stabilizing It Using LQR Controller

Ghanbari A, Haghani M and Mola M.

ABSTRACT:
In this paper, a new high-order chaotic system is proposed. This system has an equilibrium point on center and its stability is characterized by a Lyapunov Exponents. Stability of chaotic system is guaranteed using a Linear Quadratic Regulator (LQR) controller.

Keywords: Chaotic System, High-Order Chaos, Lyapunov Exponent, Equilibrium Point, LQR Controller.